[Total No. of Printed Pages:3]

CODE NO:- Z-281

FACULTY OF ENGINEERING

S.E (All Branches) Examination - June - 2015

Engineering Mathematics-IV

(Revised)

[Time: Three Hours]

[Max. Marks: 80]

10

N.B

- "Please check whether you have got the right question paper."
- *i*) Q No.1 and 6 are compulsory.
- *ii*) Solve any two questions from remaining of each section.
- iii) Figures to right indicate full marks.
- iv) Assume suitable data, if necessary.

SECTION-A

- Solve any five from the following Q.1
 - If the real part of an analytic function $f(z) = u(r, \theta) + i\vartheta(r, \theta)is r\sin\theta$, then find f (z). a)
 - If $u = \cos ax \sin hy$ is harmonic, then find 'a'. b)
 - Find the image of the line y = -x under the transformation $W = z^2$. c)
 - Evaluate $\int_0^{1+i} z^2 dz$ along y =x. d)
 - Evaluate $\int_0^1 \frac{1}{z-a} dz$, where C is the circle with center at 'a' and radius is r. e)
 - f) Find the poles of the function and the corresponding reduces at each pole of $f(z) = \frac{z+1}{z^2(z-2)}$
 - Solve $2x \frac{\partial z}{\partial x} 3y \frac{\partial z}{\partial y} = 0$ g)

OR

- Find the z-transform of $f(k) = \frac{1}{k}, k \ge 1$.
- h) Solve $\frac{\partial^2 z}{\partial x \partial y} = x$ OR Find z-transform of $f(k) = e^{ka}, k \ge 0$
- Test whether the function $f(x) = e^{-x}(\cos y i \sin y)$ is analytic or not? 05 Q.2 a)

Find the bilinear transformation which maps the points $z = 0, i, \infty$ onto the points $W = 0, \frac{1}{2}, \infty$. 05 b)

Solve $\frac{\partial^2 y}{\partial t^2} c^2 \frac{\partial^2 y}{\partial x^2}$, subject to the conditions y(0,t) = 0, y(2l,t) = 0, $\frac{\partial y}{\partial t} = 0$ at t = 0 and c) 05 $y(x,o) = \frac{bx}{l}, 0 \le x \le l$ $\frac{b}{l}(2l-x), l \le x \le 2l$ OR

Find the z-transform of $\frac{2^k}{k}$, $k \ge 1$.

Prove that $u = r^3 \cos 3\theta - r \sin \theta$ harmonic, and find its conjugate harmonic. 05 Q.3 a) 05

- Evaluate $\int_{0}^{\pi-\pi i} e^{\overline{z}} dz$, along the curve x=t, y =-t. b)
 - Solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$, with the conditions u(l, t) for all $t \ge 0$, $\frac{\partial u}{\partial t} = 0$ at x =0 and u(x,0)= 20x for 0<x<1 c) 05

Find the inverse z-transform of $\frac{z^3}{(z-3)(z-2)^2}$, |z| > 3

Q.4a)Expand
$$f(z) = \frac{1}{(x+1)(x+3)}$$
 for $0 < |z-1| < 2$.05b)Evaluates $\int_{c}^{cost + 2} dx$, where c is $|z| = 2$ by Cauchy's integral formula.05c)Solve $\frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial y^2} = 0$, subject to the conditions $u(0, y) = u(a, y) = 0$ for $0 \le y \le b$, $u(x, b) = 0$ and 0^5 $u(x, o) = x(a - x)$, for $0 \le x \le a$ ORSolve the difference equation by z-transform $Y_{n+2} + 2Y_{n+1} + Y_n = n, Y_0 = Y_1 = 0$ Q.5a)Show that the map of the real axis of z-plane on the W-plane under the transformation $W = \frac{1}{z+t}$ is a 05c:ricle and find its radius and center.05b)Evaluates $\int_{0}^{dx} \frac{dx}{z^{-2} \sin h z^{2}} d\theta$, by residues theorem.05c)Evaluate $\int_{0}^{dx} \frac{dx}{z^{-3} \sin h^{2}} d\theta$, by residues theorem.05g.6Solve any five from the following10a)Find laplace transform of cost log t $\partial(t - \pi)$ 10b)Find Lift (t)] and L [t⁴ (f)] of the function $f(t) = e^{-5t} \sin t$.10c)Find haplace transform of cost log t $\partial(t - \pi)$ 10a) f find the inverse Laplace transform of $\frac{4s+12}{s^{2}+s+16}$ 10e)Find the fourier sing transform of $\frac{2s+52}{s^{2}+1}$ 10f)find inverse Laplace transform of $\frac{4s+12}{s^{2}+s+16}$ 10e)Find the inverse Laplace transform of $\frac{4s+12}{s^{2}+s+16}$ 10f)find interse transform of $\frac{2s+52}{s^{2}+1}$ 10f)find the inverse Laplace transform of $\frac{4s+12}{s^{2}+s+16}$ 10f)find the inverse Laplace transform of $\frac{4s+12}{s^{2}+1}$ 2

c) Solve the integral equation $\int_0^\infty f(x)\cos\lambda x \, dx = e^{-\lambda}, \lambda \ge 0.$

05

Q.9 Express the following function in terms of Heaviside unit step function and hence find their Laplace 05 a) transform

$$f(x) = t, 0 < t < 2$$

 $t^2, t > 2$

Solve $y'' + 4y = \partial(t), y(0) = 0, y'(0) = 0$ by Laplace transform. 05 b) 05

Find the Fourier cosine transform of c)

$$f(x) = x, 0 < x < \frac{1}{2}$$

= 1 - x, $\frac{1}{2} < x < 1$
= 0, x > 1

Find the Laplace transform of $f(t) = \cos wt \cdot 0 < t < \pi/w$ 05 Q.10 a)

$$f(t) = \cos wt, 0 < t < \pi/w$$

 $0, \pi/w < t < 2\pi/w \text{ and } f(t) = f(t + \frac{2\pi}{w})$

b) Find the Fourier transform of
$$f(x) = 1 + \frac{x}{x} - a < x < 0$$

$$f(x) = 1 + \frac{1}{a}, \quad a < x < 0$$

= $1 - \frac{x}{a}, \quad 0 < x < a$
= 0, otherwise
$$dx = -\frac{1}{a} + \frac{1}{a} +$$

c) Solve
$$\frac{dx}{dt} = y + e^t$$
, $\frac{dy}{dt} = \sin t - x$, $x(0) = 1$, $y(0) = 0$ by Laplace transform. 05